Uno degli argomenti più importanti per l’apprendimento profondo è la qualità dei risultati. Soprattutto nel riconoscimento delle immagini e nel linguaggio, la tecnologia è chiaramente superiore a tutte le altre. A condizione che si parta da dati di addestramento di alta qualità, il deep learning è in grado di svolgere il lavoro di routine in modo molto più efficiente e rapido di qualsiasi persona, senza alcuno sforzo e mantenendo un livello di qualità costante.
In altre forme di machine learning gli sviluppatori analizzano i dati grezzi e definiscono regolarmente le caratteristiche aggiuntive di cui l’algoritmo dovrebbe tenere conto durante l’apprendimento, per ottimizzare la capacità predittiva dell'IA. Nell’apprendimento profondo è il sistema stesso a identificare le variabili utili e a integrarle nel suo processo di apprendimento. Il computer è quindi in grado di imparare da solo, senza istruzioni umane, dopo una fase di addestramento inziale. In questo modo si risparmia tempo e denaro, dal momento che non è necessario personale qualificato.
In precedenza, invece, bisognava contrassegnare manualmente grandi quantità di dati per consentire l’apprendimento della macchina. Per il riconoscimento delle immagini, ad esempio, erano necessari dipendenti che assegnassero l’etichetta del cane o del gatto alle immagini. Con il deep learning l’addestramento manuale è molto più breve. Ciò è particolarmente importante perché nella realtà commerciale vengono raccolte grandi quantità di dati, ma solo in pochissimi casi essi sono disponibili come dati strutturati (numeri di telefono, indirizzi, carte di credito, ecc.), perché solitamente sono memorizzati come dati non strutturati (immagini, documenti, e-mail, ecc.). A differenza degli altri metodi di machine learning, il deep learning può valutare diverse fonti di dati non strutturati in relazione al compito da svolgere.
La questione per cui la tecnologia sarebbe troppo costosa per rispondere alla produzione di massa non è così rilevante. Sempre più spesso stanno emergendo servizi come Google Vision e IBMs Watson, che permettono alle aziende di basarsi su reti neurali già disponibili, invece di svilupparle da zero. Questo permetterà all’apprendimento profondo di introdursi pienamente nelle realtà aziendali.